Loading...

Proceedings of

9th International Conference on Advances in Computing, Electronics and Communication ACEC 2019

"RED DEFECT DETECTION FOR RICE QUALITY ASSURANCE BY USING MACHINE LEARNING"

ATTASIT LASAKUL BOONCHANA PURAHONG PHUVIN KONGSAWAT TUANJAI ARCHEVAPANICH
DOI
10.15224/978-1-63248-176-4-05
Pages
27 - 32
Authors
4
ISBN
978-1-63248-176-4

Abstract: “This article presents an inspection system to detect red kernel defect, normally contaminating in white rice product. This contamination causes a reduction in the price rice of 6% approximately. To detect Red defect successfully, a method proposed in this paper was build up on Machine Vision techniques. The method contains three processing steps as follows. Firstly, noise elimination and localization were executed through image processing techniques. After that, RGB image would be transformed to HSV in order to obtain discriminative features. Finally, the pre-processed data was then passed into model training by using both linear and non-linear Support Vector Machines. Apart from that, Logistic regression was then employed to challenge margin maximization ability of the SVMs. The experimental result shows that linear-SVM still yields the highest performance at 86.3% of classification accuracy.”

Keywords: Thailand standard for rice, Machine Vision, HSV, Support Vector Machine.

Download PDF